7 research outputs found

    Novel sizing and modeling techniques for synchronous reluctance machines

    Get PDF
    In recent years, there is a growing interest for high efficiency electric motors without, or with reduce content of, permanent magnets (PMs) for industrial applications. The Synchronous Reluctance (SynRel) machine is one of the most promising candidates that can meet the requirements of efficient and low cost drive [1]. The key benefits of this technology are a rotor structure made of flux barriers and iron parts, without excitation coils or PMs, like in induction motors (IM) and PM machines, respectively [2]. This leads to a cost effective structure that is using the reluctance principle to generate torque. The reluctance machine topology was introduced in 1920s, however has not been utilised at high industrial volumes yet due to superiority of the alternative technologies. IMs are considered as an industry “work horse”, which dominates the electrical machines market in applications such as industrial fans, pumps and mill type loads, as it is known to be the cheapest and the most reliable machine topology. On the other hand, PMs are mostly used in high performance applications, where the power-density is of the priority. Whereas, the interest in SynRel is mainly driven by lack of magnets or any other field excitation, as well as high efficiency [3], [4], [5]. The rare-earth permanent magnets began to commercialize for electrical motors in early 1980s. Various types of applications such as electric vehicles, wind turbines, actuators, started utilization of the PM synchronous machines [6], [7], [8]. Neodymium-iron-boron (NdFeB) permanent magnets are the common type for the high-performance applications due to their superior magnetic properties. In comparison the remanent flux density Br and coercivity Hc values of NdFeB are higher than any other type of magnets i.e. samarium-cobalt (SM2Co17), which was the major breakthrough in 1970s [9], and it is still extensively used when operating temperatures are very high. The main downfall of the NdFeB is the cost. The prices of the Neodymium had a huge spike in the mid-2011, as it was increased by factor of 25 compared to the beginning of 2010 [10], [11]. After hitting its peak, the price dropped rapidly and settled at its pre-bubble price [12]. Such price instability had a huge financial effect on PM machine manufacturers. Hence, as of 2019, there is a high research 4 emphasis on electrical machines with low volume of rare earth permanent magnet material [13], [14]. There is also a growing interest in very high efficiency, or super-premium efficiency electrical machines for the industrial sector [2], [15], [16]. This is driven by new requirements of the local governments for the industrial sector, as well as the world trend towards the reduction of the energy consumption and greenhouse gas emissions [17], [18]. Currently world leading manufacturers and R&D institutions are constantly investigating the possibility of increasing the efficiency using inexpensivee solutions. SynRel is a promising technology, which has features that are aligned with both research streams – high efficiency as well as lack of magnets [10], [12]. Leading manufacturing companies such as ABB (“Asea Brown Boveri”), KSB ("Klein, Schanzlin & Becker") and Siemens already started the serial production of the high efficiency SynRel. However, despite its advantages, there are still number of problems that are being investigated. From the machine design perspective, the main challenges of the topology come from the complex anisotropic structure of the rotor. Torque ripple, power factor and other secondary effects such as rotor iron losses, vibration and noise, are the main issues in SynRel [19], [20]. These issues mainly addressed using comprehensive analysis and optimization using FE. The proposed ideas and innovative techniques that are described in this thesis could significantly reduce time and effort required to design the SynRel machines. In some cases, it was shown that the time-consuming design optimization by means of FE can be bypassed. This is achieved by applying new dimensioning techniques, hence leading to a quick and effective design tools that is applicable for the wide power range machines

    Novel sizing and modeling techniques for synchronous reluctance machines

    Get PDF
    In recent years, there is a growing interest for high efficiency electric motors without, or with reduce content of, permanent magnets (PMs) for industrial applications. The Synchronous Reluctance (SynRel) machine is one of the most promising candidates that can meet the requirements of efficient and low cost drive [1]. The key benefits of this technology are a rotor structure made of flux barriers and iron parts, without excitation coils or PMs, like in induction motors (IM) and PM machines, respectively [2]. This leads to a cost effective structure that is using the reluctance principle to generate torque. The reluctance machine topology was introduced in 1920s, however has not been utilised at high industrial volumes yet due to superiority of the alternative technologies. IMs are considered as an industry “work horse”, which dominates the electrical machines market in applications such as industrial fans, pumps and mill type loads, as it is known to be the cheapest and the most reliable machine topology. On the other hand, PMs are mostly used in high performance applications, where the power-density is of the priority. Whereas, the interest in SynRel is mainly driven by lack of magnets or any other field excitation, as well as high efficiency [3], [4], [5]. The rare-earth permanent magnets began to commercialize for electrical motors in early 1980s. Various types of applications such as electric vehicles, wind turbines, actuators, started utilization of the PM synchronous machines [6], [7], [8]. Neodymium-iron-boron (NdFeB) permanent magnets are the common type for the high-performance applications due to their superior magnetic properties. In comparison the remanent flux density Br and coercivity Hc values of NdFeB are higher than any other type of magnets i.e. samarium-cobalt (SM2Co17), which was the major breakthrough in 1970s [9], and it is still extensively used when operating temperatures are very high. The main downfall of the NdFeB is the cost. The prices of the Neodymium had a huge spike in the mid-2011, as it was increased by factor of 25 compared to the beginning of 2010 [10], [11]. After hitting its peak, the price dropped rapidly and settled at its pre-bubble price [12]. Such price instability had a huge financial effect on PM machine manufacturers. Hence, as of 2019, there is a high research 4 emphasis on electrical machines with low volume of rare earth permanent magnet material [13], [14]. There is also a growing interest in very high efficiency, or super-premium efficiency electrical machines for the industrial sector [2], [15], [16]. This is driven by new requirements of the local governments for the industrial sector, as well as the world trend towards the reduction of the energy consumption and greenhouse gas emissions [17], [18]. Currently world leading manufacturers and R&D institutions are constantly investigating the possibility of increasing the efficiency using inexpensivee solutions. SynRel is a promising technology, which has features that are aligned with both research streams – high efficiency as well as lack of magnets [10], [12]. Leading manufacturing companies such as ABB (“Asea Brown Boveri”), KSB ("Klein, Schanzlin & Becker") and Siemens already started the serial production of the high efficiency SynRel. However, despite its advantages, there are still number of problems that are being investigated. From the machine design perspective, the main challenges of the topology come from the complex anisotropic structure of the rotor. Torque ripple, power factor and other secondary effects such as rotor iron losses, vibration and noise, are the main issues in SynRel [19], [20]. These issues mainly addressed using comprehensive analysis and optimization using FE. The proposed ideas and innovative techniques that are described in this thesis could significantly reduce time and effort required to design the SynRel machines. In some cases, it was shown that the time-consuming design optimization by means of FE can be bypassed. This is achieved by applying new dimensioning techniques, hence leading to a quick and effective design tools that is applicable for the wide power range machines

    A Novel Sizing Approach for Synchronous Reluctance Machines

    Get PDF
    This paper presents a simple analytical model for the sizing of Synchronous Reluctance (SynRel) machines. The accuracy of the method is achieved by modelling a simple rotor geometry that presents all the characteristics of a real machine. The analytical equations proposed are able to guarantee accurate and fast results during the preliminary design of the machine. A generalized sizing approach, based on the saliency ratio, is presented in detail. The method is flexible and can be adapted for any SynRel machine. The accuracy of the proposed model is validated, for a range of operating conditions, comparing the results with both finite element simulations and experimental measurement carried out from an existing four poles SynRel 15kW prototype

    Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison

    Get PDF
    In the last decade, the trend toward higher efficiency and higher torque density electrical machines (EMs) without permanent magnets (PMs) for the industrial sector has rapidly increased. This work discusses the latest research and industrial advancements in synchronous reluctance machines (SynRMs), being the emergent motor topology gaining wide acceptance by many industries. This article presents an extensive literature review covering the background and evolvement of SynRM, including the most recent developments. Nowadays, SynRM has found its niche in the EM market, and the reasons for that are highlighted in this work together with its advantages and disadvantages. The key journal publications in SynRM topics are discussed presenting the biggest challenges and the latest advancements with particular regards to the design methodology. This article aims to provide a thorough overview to the research community and industry about SynRM. There is a clear potential for SynRM to take over a significant portion of the EM market in the near future to meet efficiency standards in industrial applications without the use of rare-Earth PM technology

    Optimised Design of Permanent Magnet Assisted Synchronous Reluctance Machines for Household Appliances

    Get PDF
    This paper is focused on the design, optimisation and control of a permanent magnet assisted synchronous reluctance machine (PMaSynRel) for low cost high efficiency household appliances, in particular a motor for washing machine. The design and optimisation of the motor aims at maximising the torque produced and power factor, while minimise torque oscillations and the losses, thus improving the efficiency. A campaign of tests has been carried out on the prototype of the optimised machine, comparing finite element results and experimental measurements as a validation of the proposed design. In addition, torque ripple measurements are confirming that the solution proposed is meeting the optimisation design targets. The outcomes of this project are demonstrating that PMaSynRel drives are a suitable candidate for white goods sector, and that the proposed design is able to boost the performance and efficiency class with respect to the state-of-the-art solutions

    Homothetic Design in Synchronous Reluctance Machines and Effects on Torque Ripple

    Get PDF
    This paper presents a novel design concept for Synchronous Reluctance (SynRel) machines aimed at reducing the torque ripple. Two general sizing approaches based on the homothetic scaling principle are defined and compared. An in depth analysis on the torque ripple, for a wide range of scaled geometries, evaluated by finite element, has been carried out at different operating conditions. A further analysis is performed on 4 scaled geometries that have been optimized starting from 4 different rotor geometries. It is shown that the main rotor geometrical variables converge to similar values for all scaled machines. The accuracy of the proposed model is then validated by comparing the FE simulated torque ripple waveforms with the experimental data carried out, for a range of operating conditions, on a machine prototype. The outcome of this work is a fast and accurate scaling technique for the preliminary design of SynRel machines with reduced torque ripple

    A Homothetic Scaling Criteria for Synchronous Reluctance Machines Design

    Get PDF
    This paper proposes a concept for homothetic scaling of Synchronous Reluctance (SynRel) machines with the aim to generate a design for a wide range of power ratings. A generalized modeling approach, based on the saliency ratio, is presented in detail to analytically evaluate the magnetic behavior of the scaled SynRel machines. The analytical model has been applied to a wide range of machines and validated through finite element analysis. General scaling functions are derived to size and evaluate the performance of the scaled machines using the data resulting from the analytical model. The accuracy of the proposed functions is validated, for a range of operating conditions, comparing the results with the experimental measurement carried out on two 4-poles SynRel prototypes. These have been designed using the homothetic method proposed, which has been proven to be a quick and accurate preliminary sizing tool for SynRel motors
    corecore